
639

C H A P T E R

V
I. Tc

l a
nd

 C

 45

Compiling Tcl and Extensions 45

This chapter explains how to build Tcl from the source distribution, and how to
create C extensions that are built according to the standard Tcl Extension
Architecture (TEA).

This chapter is from Practical Programming in Tcl and Tk, 3rd Ed.
© 1999, Brent Welch
http://www.beedub.com/book/

Compiling Tcl from the source distribu-
tion is easy. One of the strengths of Tcl is that it is quite portable, so it has been
built on all kinds of systems including Unix, Windows, Macintosh, AS/400, IBM
mainframes, and embedded systems. However, it can be a challenge to create a
Tcl extension that has the same portability. The Tcl Extension Architecture
(TEA) provides guidelines and samples to help extension authors create portable
Tcl extensions. The TEA is a result of collaboration within the Tcl user commu-
nity, and it will continue to evolve.

This chapter starts with a walk through of how Tcl itself is built. This
serves as a model for building extensions. There are also some by-products of the
Tcl build process that are designed to make it easier to build your extensions. So
if you are an extension author, you will almost always want to get started by
compiling Tcl itself.

You can find the Tcl and Tk sources on the CD-ROM, and on the Web:
http://www.scriptics.com/products/tcltk/

Source distributions can be found at the Scriptics FTP site:
ftp://ftp.scriptics.com/pub/tcl/

The on-line CVS repository for Tcl software is explained here:
http://www.scriptics.com/products/tcltk/netcvs.html

If you have trouble with these URLs, please check this book’s Web site for
current information about the Tcl sources:

http://www.beedub.com/book/

640 Compiling Tcl and Extensions Chap. 45

Standard Directory Structure

The Source Distribution

Table 45–1 describes the directory structure of the Tcl source distribution.
The Tk distribution is similar, and you should model your own source distribu-
tion after this. It is also standard to place the Tcl, Tk, and other source packages
under a common source directory (e.g., /usr/local/src or /home/welch/cvs). In
fact, this may be necessary if the packages depend on each other.

Table 45–1 The Tcl source directory structure.

tcl8.2 The root of the Tcl sources. This contains a README and
license_terms file, and several subdirectories.

tcl8.2/compat This contains .c files that implement procedures that are
otherwise broken in the standard C library on some plat-
forms. They are only used if necessary.

tcl8.2/doc This contains the reference documentation. Currently this
is in nroff format suitable for use with the UNIX man pro-
gram. The goal is to convert this to XML.

tcl8.2/generic This contains the generic .c and .h source files that are
shared among Unix, Windows, and Macintosh.

tcl8.2/mac This contains the .c and .h source files that are specific
to Macintosh. It also contains Code Warrior project files.

tcl8.2/library This contains init.tcl and other Tcl files in the standard Tcl
script library.

tcl8.2/library/encoding This contains the Unicode conversion tables.

tcl8.2/library/package There are several subdirectories (e.g., http2.0) that
contain Tcl script packages.

tcl8.2/test This contains the Tcl test suite. These are Tcl scripts that
exercise the Tcl implementation.

tcl8.2/tools This is a collection of scripts used to help build the Tcl
distribution.

tcl8.2/unix This contains the .c and .h source files that are specific
to UNIX. This also contains the configure script and the
Makefile.in template.

tcl8.2/unix/dltest This contains test files for dynamic loading.

tcl8.2/unix/platform These can be used to build Tcl for several different plat-
forms. You create the package directories yourself.

tcl8.2/win This contains the .c and .h source files that are specific
to Windows. This also contains the configure script and
the Makefile.in template. This may contain a make-
file.vc that is compatible with nmake.

Building Tcl from Source 641
V

I. Tc
l a

nd
 C

The Installation Directory Structure

When you install Tcl, the files end up in a different arrangement than the
one in the source distribution does. The standard installation directory is orga-
nized so that it can be shared by computers with different machine types (e.g.,
Windows, Linux, and Solaris). The Tcl scripts, include files, and documentation
are all in shared directories. The applications and programming libraries (i.e.,
DLLs) are in platform-specific directories. You can choose where these two
groups of files are installed with the --prefix and --exec-prefix options to
configure, which is explained in detail in the next section. Table 45–2 shows the
standard installation directory structure:

If you are an expert in configure, you may be aware of other options that
give you even finer control over where the different parts of the installation go.
However, because of the way Tcl automatically searches for scripts and binary
libraries, you should avoid deviating from the recommended structure.

Building Tcl from Source

Compiling Tcl from the source distribution is a two-step process: configuration,
which uses a configure script; then compiling, which is controlled by the make
program. The configure script examines the current system and makes various
settings that are used during compilation. When you run configure, you make

Table 45–2 The installation directory structure.

arch/bin This contains platform-specific applications. On Windows,
this also contains binary libraries (i.e., DLLs). Typical arch
names are solaris-sparc, linux-ix86, and win-ix86.

arch/lib This contains platform-specific binary libraries on UNIX sys-
tems (e.g., libtcl8.2.so)

bin This contains platform-independent applications (e.g., Tcl
script applications).

doc This contains documentation.

include This contains public .h files.

lib This contains subdirectories for platform-independent script
packages. Packages stored here are found automatically by
the Tcl auto loading mechanism described in Chapter 12.

lib/tcl8.2 This contains the contents of the tcl8.2/library source
directory, including subdirectories.

lib/package This contains Tcl scripts for package. Example package
directories include tk8.2 and itcl3.0.1.

man This contains reference documentation in UNIX man format.

642 Compiling Tcl and Extensions Chap. 45

some basic choices about how you will compile Tcl, such as whether you will com-
pile with debugging systems, or whether you will turn on threading support. You
also define the Tcl installation directory with configure. You use make to compile
the source code, install the compiled application, run the test suite, and clean up
after yourself.

The make facility is familiar to any Unix programmer. By using the freely
available Cygwin tools, you can use configure and make on Windows, too. Tcl still
uses the Microsoft VC++ compiler; it does not use gcc on Windows.

Windows and Macintosh programmers may not have experience with make.
The source distributions may also include project files for the Microsoft Visual
C++ compiler and the Macintosh Code Warrior compiler, and it may be easier for
you to use these project files, especially on the Macintosh. Look in the win and
mac subdirectories of the source distribution for these project files. However, the
focus of this chapter is on using configure and make to build your Tcl applica-
tions and extensions.

Configure and Autoconf

If you are the developer of a Tcl extension, there is a preliminary setup step
that comes before configuration. In this step, you create templates for the config-
ure script and the Makefile that drives make. Then, you use the autoconf pro-
gram to create the configure script. By using autoconf, a developer on Windows
or Linux can generate a configure script that is usable by other developers on
Solaris, HP-UX, FreeBSD, AIX, or any system that is vaguely UNIX-like.

The three steps: setup, configuration and make, are illustrated by the build
process for Tcl and Tk:

• The developer of a source code package creates a configure.in template
that expresses the system dependencies of the source code. They use the
autoconf program to process this template into a configure script. The
developer also creates a Makefile.in template. Creating these templates is
described later. The Tcl and Tk source distributions already contain the
configure script, which can be found in the unix and win subdirectories.
However, if you get the Tcl sources from the network CVS repository, you
must run autoconf yourself to generate the configure script.

• A user of a source code package runs configure on the computer system
they will use to compile the sources. This step converts Makefile.in to a
Makefile suitable for the platform and configuration settings. If you have
only one platform, simply run configure in the unix (or win) directory:

% cd /usr/local/src/tcl8.2/unix

% ./configure flags

The configure flags are described in Table 45–3. I use ./configure because
I do not have . on my PATH. Furthermore, I want to ensure that I run the
configure script from the current directory! If you build for multiple plat-
forms, create subdirectories of unix and run configure from there. For
example, here we use ../configure:

Building Tcl from Source 643
V

I. Tc
l a

nd
 C

% cd /usr/local/src/tcl8.2/unix
% mkdir solaris
% cd solaris
% ../configure flags

• The configure script uses the Makefile.in template to generate the
Makefile. Once configure is complete, you build your program with make:

% make

You can do other things with make. To run the test suite, do:
% make test

To install the compiled program or extension, do:
% make install

The Tcl Extension Architecture defines a standard set of actions, or make
targets, for building Tcl sources. Table 45–4 on page 650 shows the standard
make targets.

Make sure you have a working compiler.
As the configure script executes, it prints out messages about the properties

of the current platform. You can tell if you are in trouble if the output contains
either of these messages:

checking for cross compiler ... yes

or
checking if compiler works ... no

Either of these means that configure has failed to find a working compiler.
In the first case, it assumes that you are configuring on the target system but
will cross-compile from a different system. Configure proceeds bravely ahead,
but the resulting Makefile is useless. While cross-compiling is common on
embedded processors, it is rarely necessary on UNIX and Windows. I see this
message only when my UNIX environment isn’t set up right to find the compiler.

Many UNIX venders no longer bundle a working compiler. Fortunately, the
freely available gcc compiler has been ported to nearly every UNIX system. You
should be able to search the Internet and find a ready-to-use gcc package for
your platform.

On Windows there is a more explicit compiler check, and configure exits if it
cannot find the compiler. Tcl is built with the Microsoft Visual C++ compiler. It
ships with a batch file, vcvars32.bat, that sets up the environment so that you
can run the compiler from the command line. You should read that file and con-
figure your environment so that you do not have to remember to run the batch
file all the time. At this time, other Windows compilers are not supported by the
autoconf macros.

Standard Configure Flags

Table 45–3 shows the standard options for Tcl configure scripts. These are
implemented by a configure library file (aclocal.m4) that you can use in your
own configure scripts. The facilities provided by aclocal.m4 are described in
more detail later.

644 Compiling Tcl and Extensions Chap. 45

Any flag with disable or enable in its name can be inverted. Table 45–3
lists the nondefault setting, however, so you can just leave the flag out to turn it
off. For example, when building Tcl on Solaris with the gcc compiler, shared
libraries, debugging symbols, and threading support turned on, use this com-
mand:

configure --prefix=/home/welch/install \
--exec-prefix=/home/welch/install/solaris \
--enable-gcc --enable-threads --enable-symbols

Keep all your sources next to the Tcl sources.
Your builds will go the most smoothly if you organize all your sources under

a common directory. In this case, you can specify the same configure flags for Tcl
and all the other extensions you will compile. In particular, you must use the
same --prefix and --exec-prefix so that everything gets installed together.

If your source tree is not adjacent to the Tcl source tree, then you must use
--with-tclinclude or --with-tcllib so that the header files and runtime
library can be found during compilation. Typically, this can happen if you build
an extension under your home directory, but you are using a copy of Tcl that has
been installed by your system administrator. The --with-x11include and --
with-x11lib flags are similar options necessary when building Tk if your X11
installation is in a nonstandard location.

Table 45–3 Standard configure flags.

--prefix=dir Defines the root of the installation directory hierarchy.
The default is /usr/local.

--exec-prefix=dir This defines the root of the installation area for platform-
specific files. This defaults to the --prefix value. An
example setting is /usr/local/solaris-sparc.

--enable-gcc Uses the gcc compiler instead of the default system com-
piler.

--disable-shared Disables generation of shared libraries and Tcl shells that
dynamically link against them. Statically linked shells
and static archives are built instead.

--enable-symbols Compiles with debugging symbols.

--enable-threads Compiles with thread support turned on.

--with-tcl=dir Specifies the location of the build directory for Tcl.

--with-tk=dir Specifies the location of the build directory for Tk.

--with-tclinclude=dir Specifies the directory that contains tcl.h.

--with-tcllib=dir Specifies the directory that contains the Tcl binary library
(e.g., libtclstubs.a).

--with-x11include=dir Specifies the directory that contains X11.h.

--with-x11lib=dir Specifies the directory that contains the X11 binary
library (e.g., libX11.6.0.so).

Using Stub Libraries 645
V

I. Tc
l a

nd
 C

Installation

The --prefix flag specifies the main directory (e.g., /home/welch/install).
The directories listed in Table 45–2 are created under this directory. If you do not
specify --exec-prefix, then the platform-specific binary files are mixed into the
main bin and lib directories. For example, the tclsh8.2 program and
libtcl8.2.so shared library will be installed in:

/home/welch/install/bin/tclsh8.2

/home/welch/install/lib/libtclsh8.2.so

The script libraries and manual pages will be installed in:
/home/welch/install/lib/tcl8.2

/home/welch/install/man

If you want to have installations for several different platforms, then spec-
ify an --exec-prefix that is different for each platform. For example, if you use
--exec-prefix=/home/welch/install/solaris, then the tclsh8.2 program and
libtcl8.2.so shared library will be installed in:

/home/welch/install/solaris/bin/tclsh8.2

/home/welch/install/solaris/lib/libtclsh8.2.so

The script libraries and manual pages will remain where they are, so they
are shared by all platforms. Note that Windows has a slightly different installa-
tion location for binary libraries. They go into the arch/bin directory along with
the main executable programs.

Using Stub Libraries

One problem with extensions is that they get compiled for a particular version of
Tcl. As new Tcl releases occur, you find yourself having to recompile extensions.
This was necessary for two reasons. First, the Tcl C library tended to change its
APIs from release to release. Changes in its symbol table tie a compiled exten-
sion to a specific version of the Tcl library. Another problem occurred if you com-
piled tclsh statically and then tried to dynamically load a library. Some systems
do not support back linking in this situation, so tclsh would crash. Paul Duffin
created a stub library mechanism for Tcl that helps solve these problems.

The main idea is that Tcl creates two binary libraries: the main library
(e.g., libtcl8.2.so) and a stub library (e.g., libtclstub.a). All the code is in the
main library. The stub library is just a big jump table that contains addresses of
functions in the main library. An extension calls Tcl through the jump table. The
level of indirection makes the extension immune to changes in the Tcl library. It
also handles the back linking problem. If this sounds expensive, it turns out to be
equivalent to what the operating system does when you use shared libraries (i.e.,
dynamic link libraries). Tcl has just implemented dynamic linking in a portable,
robust way.

To make your extension use stubs, you have to compile with the correct
flags, and you must add a new call to your extensions Init procedure (e.g.,

646 Compiling Tcl and Extensions Chap. 45

Examplea_Init). The TCL_USE_STUBS compile-time flag turns the Tcl C API calls
into macros that use the stub table. The Tcl_InitStubs call ensures that the
jump table is initialized, so you must call Tcl_InitStubs as the very first thing
in your Init procedure. A typical call looks like this:

if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {

return TCL_ERROR;

}

Tcl_InitStubs is similar in spirit to Tcl_PkgRequire in that you request a
minimum Tcl version number. Stubs have been supported since Tcl 8.1, and the
API will evolve in a backward-compatible way. Unless your extension uses new C
APIs introduced in later versions, you should specify the lowest version possible
so that it is compatible with more Tcl applications.

Using autoconf

Autoconf uses the m4 macro processor to translate the configure.in template
into the configure script. The configure script is run by /bin/sh (i.e., the Bourne
Shell). Creating the configure.in template is simplified by a standard m4
macro library that is distributed with autoconf. In addition, a Tcl distribution
contains a tcl.m4 file that has additional autoconf macros. Among other things,
these macros support the standard configure flags described in Table 45–3.

Creating configure templates can be complex and confusing. Mostly this is
because a macro processor is being used to create a shell script. The days I have
spent trying to change the Tcl configuration files really made me appreciate the
simplicity of Tcl! Fortunately, there is now a standard set of Tcl-specific autoconf
macros and a sample Tcl extension that uses them. By editing the configure.in
and Makefile.in sample templates, you can ignore the details of what is hap-
pening under the covers.

The tcl.m4 File

The Tcl source distribution includes tcl.m4 and aclocal.m4 files. The auto-
conf program looks for the aclocal.m4 file in the same directory as the config-
ure.in template. In our case, the aclocal.m4 file just includes the tcl.m4 file.
Autoconf also has a standard library of m4 macros as part of its distribution. To
use tcl.m4 for your own extension, you have some options. The most common
way is to copy tcl.m4 into aclocal.m4 in your source directory. Or you can copy
both aclocal.m4 and tcl.m4 and have aclocal.m4 include tcl.m4. If necessary,
you can add more custom macros to this aclocal.m4 file. Alternatively, you can
copy the tcl.m4 file into the standard autoconf macro library.

The tcl.m4 file defines macros whose names begin with SC_ (for Scriptics).
The standard autoconf macro names begin with AC_. This book does not provide
an exhaustive explanation of all these autoconf macros. Instead, the important
ones are explained in the context of the sample extension.

The Sample Extension 647
V

I. Tc
l a

nd
 C

The tcl.m4 file replaces the tclConfig.sh found in previous versions of
Tcl. (Actually, tclConfig.sh is still produced by the Tcl 8.2 configure script, but
its use is deprecated.) The idea of tclConfig.sh was to capture some important
results of Tcl’s configure so that they could be included in the configure scripts
used by an extension. However, it is better to recompute these settings when con-
figuring an extension because, for example, different compilers could be used to
build Tcl and the extension. So, instead of including tclConfig.sh into an exten-
sion’s configure script, the extension’s configure.in should use the SC_ macros
defined in the tcl.m4 file.

Makefile Templates

Autoconf implements yet another macro mechanism for the Makefile.in
templates. The basic idea is that the configure script sets shell variables as it
learns things about your system. Finally, it substitutes these variables into
Makefile.in to create the working Makefile. The syntax for the substitutions in
Makefile.in is:

@configure_variable_name@

Often, the make variable and the shell variable have the same name. For
example, the following statement in Makefile.in passes the TCL_LIBRARY value
determined by configure through to the Makefile:

TCL_LIBRARY = @TCL_LIBRARY@

The AC_SUBST macro specifies what shell variables should be substituted in
the Makefile.in template. For example:

AC_SUBST(TCL_LIBRARY)

The Sample Extension

This section describes the sample extension that is distributed as part of the Tcl
Extension Architecture (TEA) standard. The goal of TEA is to create a standard
for Tcl extensions that makes it easier to build, install, and share Tcl extensions.
The sample Tcl extension is on the CD, and it can be found on the Web at:

ftp://ftp.scriptics.com/pub/tcl/examples/tea/

There is also documentation on the Web at:
http://www.scriptics.com/products/tcltk/tea/

The extension described here is stored in the network CVS repository under
the module name samplextension. If you want direct access to the latest ver-
sions of Tcl source code, you can learn about the CVS repository at this web page:

http://www.scriptics.com/products/tcltk/netcvs.html

The sample extension implements the Secure Hash Algorithm (SHA1).
Steve Reid wrote the original SHA1 C code, and Dave Dykstra wrote the original
Tcl interface to it. Michael Thomas created the standard configure and Makefile
templates.

648 Compiling Tcl and Extensions Chap. 45

Instead of using the original name, sha1, the example uses a more generic
name, exampleA, in its files, libraries, and package names. When editing the
sample templates for your own extension, you can simply replace occurrences of
"exampleA" with the appropriate name for your extension. The sample files are
well commented, so it is easy to see where you need to make the changes.

configure.in

The configure.in file is the template for the configure script. This file is
very well commented. The places you need to change are marked with
__CHANGE__. The first macro to change is:

AC_INIT(exampleA.h)

The AC_INIT macro lists a file that is part of the distribution. The name is
relative to the configure.in file. Other possibilities include ../generic/tcl.h
or src/mylib.h, depending on where the configure.in file is relative to your
sources. The AC_INIT macro necessary to support building the package in differ-
ent directories (e.g., either tcl8.2/unix or tcl8.2/unix/solaris). The next
thing in configure.in is a set of variable assignments that define the package’s
name and version number:

PACKAGE = exampleA

MAJOR_VERSION = 0

MINOR_VERSION = 2

PATCH_LEVEL =

The package name determines the file names used for the directory and the
binary library file created by the Makefile. This name is also used in several con-
figure and Makefile variables. You will need to change all references to "exam-
pleA" to match the name you choose for your package.

The version and patch level support a three-level scheme, but you can leave
the patch level empty for two-level versions like 0.2. If you do specify a patch-
level, you need to include a leading "." or "p" in it. These values are combined to
create the version number like this:

VERSION = ${MAJOR_VERSION}.${MINOR_VERSION}${PATCH_LEVEL}

Windows compilers create a special case for shared libraries (i.e., DLLs).
When you compile the library itself, you need to declare its functions one way.
When you compile code that uses the library, you need to declare its functions
another way. This complicates the exampleA.h header file. Happily, the complex-
ity is hidden inside some macros. In configure.in, you simply define a
build_Package variable. The sample defines:

AC_DEFINE(BUILD_exampleA)

This variable is set only when you are building the library itself, and it is
defined only when compiling on Windows. We will show later how this is used in
exampleA.h to control the definition of the Examplea_Init procedure.

The configure.in file has a bunch of magic to determine the name of the
shared library file (e.g., packageA02.dll, packageA.0.2.so, packa-

The Sample Extension 649
V

I. Tc
l a

nd
 C

geA.0.2.shlib, etc.). All you need to do is change one macro to match your pack-
age name.

AC_SUBST(exampleA_LIB_FILE)

These should be the only places you need to edit when adapting the sample
configure.in to your extension. It is worth noting that the last macro deter-
mines which templates are processed by the configure script. The sample gener-
ates two files from templates, Makefile and mkIndex.tcl:

AC_OUTPUT([Makefile mkIndex.tcl])

The mkIndex.tcl script is a script that runs pkg_mkIndex to generate the
pkgIndex.tcl file. The pkg_mkIndex command is described in Chapter 12. The
mkIndex.tcl script is more complex than you might expect because UNIX sys-
tems and Windows have different default locations for binary libraries. The goal
is to create a pkgIndex.tcl script that gets installed into the arch/lib/package
directory but that can find either arch/bin/package.dll or arch/lib/libpack-
age.so, depending on the system. You may need to edit the mkIndex.tcl.in tem-
plate, especially if your extension is made of both Tcl scripts and a binary library.

Makefile.in

The Makefile.in template is converted by the configure script into the
Makefile. The sample Makefile.in is well commented so that it is easy to see
where to make changes. However, there is some first class trickery done with the
Makefile variables that is not worth explaining in detail. (Not in a Tcl book, at
least!) There are a few variables with exampleA in their name. In particular,
exampleA_LIB_FILE corresponds to a variable name in the configure script. You
need to change both files consistently. Some of the lines you need to change are
shown below:

exampleA_LIB_FILE = @exampleA_LIB_FILE@

lib_BINARIES = $(exampleA_LIB_FILE)

$(exampleA_LIB_FILE)_OBJECTS = $(exampleA_OBJECTS)

The @varname@ syntax is used to substitute the configure variable with its
platform-specific name (e.g., libexamplea.dll or libexample.so). The
lib_BINARIES variable names the set of libraries built by the "make binaries"
target. The _OBJECT variable is a clever trick to allow a generic library make
rule, which appears in the Makefile.in template as @MAKE_LIB@. Towards the
end of Makefile.in, there is a rule that uses these variables, and you must
change uses of exampleA to match your package name:

$(exampleA_LIB_FILE) : $(exampleA_OBJECTS)

-rm -f $(exampleA_LIB_FILE)

@MAKE_LIB@

$(RANLIB) $(exampleA_LIB_FILE)

You must define the set of source files and the corresponding object files
that are part of the library. In the sample, exampleA.c implements the core of the
Secure Hash Algorithm, and the tclexampleA.c file implements the Tcl com-

650 Compiling Tcl and Extensions Chap. 45

mand interface:
exampleA_SOURCES = exampleA.c tclexampleA.c

SOURCES = $(exampleA_SOURCES)

The object file definitions use the OBJEXT variable that is .o for UNIX and
.obj for Windows:

exampleA_OBJECTS = exampleA.${OBJEXT} tclexampleA.${OBJEXT}

OBJECTS = $(exampleA_OBJECTS)

The header files that you want to have installed are assigned to the
GENERIC_HDRS variable. The srcdir Make variable is defined during configure to
be the name of the directory containing the file named in the AC_INIT macro:

GENERIC_HDRS = $(srcdir)/exampleA.h

Unfortunately, you must specify explicit rules for each C source file. The
VPATH mechanism is not reliable enough to find the correct source files reliably.
The configure script uses AC_INIT to locate source files, and you create rules that
use the resulting $(srcdir) value. The rules look like this:

exampleA.$(OBJEXT) : $(srcdir)/exampleA.c

$(COMPILE) -c ‘@CYGPATH@ $(srcdir)/exampleA.c‘ -o $@

The sample Makefile includes several standard targets. Even if you decide
not to use the sample Makefile.in template, you should still define the targets
listed in Table 45–4 to ensure your extension is TEA compliant. Plans for auto-
matic build environments depend on every extension implementing the standard
make targets. The targets can be empty, but you should define them so that make
will not complain if they are used.

Table 45–4 TEA standard Makefile targets.

all Makes these targets in order: binaries, libraries, doc.

binaries Makes executable programs and binary libraries (e.g., DLLs).

libraries Makes platform-independent libraries.

doc Generates documentation files.

install Makes these targets in order: install-binaries, install-
libraries, install-doc.

install-binaries Installs programs and binary libraries.

install-libraries Installs script libraries.

install-doc Installs documentation files.

test Runs the test suite for the package.

depend Generates makefile dependency rules.

clean Removes files built during the make process.

distclean Removes files built during the configure process.

The Sample Extension 651
V

I. Tc
l a

nd
 C

Standard Header Files

This section explains a technique you should use to get symbols defined
properly in your binary library. The issue is raised by Windows compilers, which
have a notion of explicitly importing and exporting symbols. When you build a
library you export symbols. When you link against a library, you import symbols.
The BUILD_exampleA variable is defined on Windows when you are building the
library. This variable should be undefined on UNIX, which does not have this
issue. Your header file uses this variable like this:

#ifdef BUILD_exampleA

#undef TCL_STORAGE_CLASS

#define TCL_STORAGE_CLASS DLLEXPORT

#endif

The TCL_STORAGE_CLASS variable is used in the definition of the EXTERN
macro. You must use EXTERN before the prototype for any function you want to
export from your library:

EXTERN int Examplea_Init _ANSI_ARGS_((Tcl_Interp *Interp));

The _ANSI_ARGS_ macro is used to guard against old C compilers that do
not tolerate function prototypes.

Using the Sample Extension

You should be able to configure, compile, and install the sample extension
without modification. On my Solaris machine, the binary library is named
exampleA0.2.so, while on my Windows NT machine the library is named
exampleA02.dll. The package name is Tclsha1, and it implements the sha1 Tcl
command. Ordinarily these names would be more consistent with the file names
and package names in the template files. However, the names in the sample are
designed to be easy to edit in the template. Assuming that you use make install
to copy the binary library into the standard location for your site, you can use the
package from Tcl like this:

package require Tclsha1

sha1 -string "some string"

The sha1 command returns a 128 bit encoded hash function of the input
string. There are a number of options to sha1 you can learn about by reading the
manual page that is included with the extension.

Blank page 652

